Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 223: 116129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490517

RESUMEN

Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.


Asunto(s)
Leptina , Obesidad , Humanos , Recién Nacido , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
2.
Neurobiol Dis ; 194: 106487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552722

RESUMEN

Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.


Asunto(s)
Quinasa 2 de Adhesión Focal , Esquizofrenia , Humanos , Ratones , Animales , Quinasa 2 de Adhesión Focal/metabolismo , Habilidades Sociales , Hipocampo/metabolismo , Células Piramidales/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362103

RESUMEN

Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Resistencia a la Insulina , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiología
5.
Nat Metab ; 4(7): 901-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879461

RESUMEN

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Asunto(s)
Lactancia Materna , Obesidad , Animales , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Ratas
6.
Rev Endocr Metab Disord ; 23(5): 919-930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687272

RESUMEN

The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts profound effects on metabolism by its actions on different peripheral tissues but also in the brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, including regulation of food intake, energy expenditure, and glycemia. The dysregulation of this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or liver disease. In this review, we discuss how the growth hormone/insulin growth factor-1 axis regulates metabolism and its interactions with the central nervous system. Finally, we state our vision for possible therapeutic uses of compounds based in the components of this hepatic axis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Sistema Nervioso Central/metabolismo , Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35328539

RESUMEN

Weight gain is a hallmark of decreased estradiol (E2) levels because of menopause or following surgical ovariectomy (OVX) at younger ages. Of note, this weight gain tends to be around the abdomen, which is frequently associated with impaired metabolic homeostasis and greater cardiovascular risk in both rodents and humans. However, the molecular underpinnings and the neuronal basis for these effects remain to be elucidated. The aim of this study is to elucidate whether the kappa-opioid receptor (k-OR) system is involved in mediating body weight changes associated with E2 withdrawal. Here, we document that body weight gain induced by OVX occurs, at least partially, in a k-OR dependent manner, by modulation of energy expenditure independently of food intake as assessed in Oprk1-/-global KO mice. These effects were also observed following central pharmacological blockade of the k-OR system using the k-OR-selective antagonist PF-04455242 in wild type mice, in which we also observed a decrease in OVX-induced weight gain associated with increased UCP1 positive immunostaining in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Remarkably, the hypothalamic mTOR pathway plays an important role in regulating weight gain and adiposity in OVX mice. These findings will help to define new therapies to manage metabolic disorders associated with low/null E2 levels based on the modulation of central k-OR signaling.


Asunto(s)
Ingestión de Alimentos , Receptores Opioides kappa , Tejido Adiposo Pardo/metabolismo , Animales , Peso Corporal , Metabolismo Energético , Estrógenos/metabolismo , Femenino , Humanos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Ovariectomía/efectos adversos , Receptores Opioides kappa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aumento de Peso
8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269579

RESUMEN

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Sistemas Neurosecretores/metabolismo , Obesidad/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Metabolismo Energético , Humanos , Área Hipotalámica Lateral/metabolismo , Metabolismo de los Lípidos
9.
Nat Rev Endocrinol ; 17(12): 745-755, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608277

RESUMEN

Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.


Asunto(s)
Hormonas Hipotalámicas , Animales , Homeostasis , Humanos , Hormonas Hipotalámicas/metabolismo , Mamíferos , Melaninas , Hormonas Hipofisarias/metabolismo
10.
Sci Rep ; 11(1): 16357, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381140

RESUMEN

Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in the forebrain, especially in pyramidal neurons of the hippocampus. Previous reports suggested its role in hippocampal synaptic plasticity and spatial memory but with contradictory findings possibly due to experimental conditions. Here we address this issue and show that novel object location, a simple test of spatial memory induced by a single training session, is altered in Pyk2 KO mice and that re-expression of Pyk2 in the dorsal hippocampus corrects this deficit. Bilateral targeted deletion of Pyk2 in dorsal hippocampus CA1 region also alters novel object location. Long term potentiation (LTP) in CA1 is impaired in Pyk2 KO mice using a high frequency stimulation induction protocol but not with a theta burst protocol, explaining differences between previous reports. The same selective LTP alteration is observed in mice with Pyk2 deletion in dorsal hippocampus CA1 region. Thus, our results establish the role of Pyk2 in specific aspects of spatial memory and synaptic plasticity and show the dependence of the phenotype on the type of experiments used to reveal it. In combination with other studies, we provide evidence for a selective role of non-receptor tyrosine kinases in specific aspects of hippocampal neurons synaptic plasticity.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Plasticidad Neuronal/fisiología , Memoria Espacial/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Animales , Humanos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología
11.
Redox Biol ; 41: 101945, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33744652

RESUMEN

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.


Asunto(s)
Proopiomelanocortina , Sirtuina 3 , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo Energético , Femenino , Masculino , Ratones , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Sirtuina 3/metabolismo
12.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572672

RESUMEN

Sirtuins are NAD+ dependent deacetylases that regulate a large number of physiological processes. These enzymes are highly conserved and act as energy sensors to coordinate different metabolic responses in a controlled manner. At present, seven mammalian sirtuins (SIRT 1-7) have been identified, with SIRT1 and SIRT6 shown to exert their metabolic actions in the hypothalamus, both with crucial roles in eliciting responses to dampen metabolic complications associated with obesity. Therefore, our aim is to compile the current understanding on the role of SIRT1 and SIRT6 in the hypothalamus, especially highlighting their actions on the control of energy balance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Obesidad/metabolismo , Sirtuinas/metabolismo , Animales , Peso Corporal , Ingestión de Alimentos , Humanos , Hipotálamo/metabolismo , Mamíferos
13.
Nat Commun ; 11(1): 5808, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199701

RESUMEN

Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle.


Asunto(s)
Biocatálisis , Homeostasis , Metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Transducción de Señal , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Genotipo , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Células Musculares/citología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo
14.
Neuroendocrinology ; 110(11-12): 1042-1054, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945763

RESUMEN

Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Agonistas de la Guanilato Ciclasa C/farmacología , Hipotálamo/efectos de los fármacos , Obesidad/tratamiento farmacológico , Péptidos/farmacología , Receptores de Enterotoxina/efectos de los fármacos , Termogénesis/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Rev Endocr Metab Disord ; 21(1): 45-56, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758299

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are two of the most common liver diseases associated with obesity, type 2 diabetes and metabolic syndrome. The prevalence of these conditions are increasingly rising and presently there is not a pharmacological option available in the market. Elucidation of the mechanism of action and the molecular underpinnings behind liver disease could help to better understand the pathophysiology of these illnesses. In this sense, in the last years modulation of the ghrelin system in preclinical animal models emerge as a promising therapeutic tool. In this review, we compile the latest knowledge of the modulation of ghrelin system and its intracellular pathways that regulates lipid metabolism, hepatic inflammation and liver fibrosis. We also describe novel processes implicated in the regulation of liver disease by ghrelin, such as autophagy or dysregulated circadian rhythms. In conclusion, the information displayed in this review support that the ghrelin system could be an appealing strategy for the treatment of liver disease.


Asunto(s)
Ghrelina/metabolismo , Metabolismo de los Lípidos , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Ghrelina/fisiología , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Hígado/fisiopatología , Cirrosis Hepática/fisiopatología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología
16.
Diabetes ; 68(12): 2210-2222, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31530579

RESUMEN

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Intolerancia a la Glucosa/metabolismo , Hiperfagia/metabolismo , Hormonas Hipotalámicas/farmacología , Melaninas/farmacología , Neuronas/efectos de los fármacos , Hormonas Hipofisarias/farmacología , Proopiomelanocortina/metabolismo , Sirtuina 1/metabolismo , Adiposidad/fisiología , Animales , Proteína Forkhead Box O1/genética , Intolerancia a la Glucosa/genética , Hiperfagia/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Sirtuina 1/genética
17.
Int J Mol Sci ; 20(16)2019 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405212

RESUMEN

Glucagon exerts pleiotropic actions on energy balance and has emerged as an attractive target for the treatment of diabetes and obesity in the last few years. Glucagon reduces body weight and adiposity by suppression of appetite and by modulation of lipid metabolism. Moreover, this hormone promotes weight loss by activation of energy expenditure and thermogenesis. In this review, we cover these metabolic actions elicited by glucagon beyond its canonical regulation of glucose metabolism. In addition, we discuss recent developments of therapeutic approaches in the treatment of obesity and diabetes by dual- and tri-agonist molecules based on combinations of glucagon with other peptides. New strategies using these unimolecular polyagonists targeting the glucagon receptor (GCGR), have become successful approaches to evaluate the multifaceted nature of glucagon signaling in energy balance and metabolic syndrome.


Asunto(s)
Regulación del Apetito , Diabetes Mellitus/metabolismo , Metabolismo Energético , Glucagón/metabolismo , Obesidad/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Regulación del Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Glucagón/agonistas , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Terapia Molecular Dirigida , Obesidad/tratamiento farmacológico , Péptidos/farmacología , Receptores de Glucagón/metabolismo , Termogénesis/efectos de los fármacos
18.
Expert Opin Drug Discov ; 14(5): 421-431, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30821530

RESUMEN

INTRODUCTION: Current pharmacological therapies that target single receptors have limited efficacy for the treatment of diabetes and obesity. Novel approaches with hybrid peptides that activate more than one receptor at once to generate beneficial effects through synergistic effects have shown promising results. Several unimolecular dual and tri-agonists, mainly associated with GPCR like GLP-1/GCG/GIP receptors, have shown exceptional efficacy in preclinical models, and are currently being evaluated in clinical trials to investigate their safety and beneficial effects in humans. Areas covered: Herein, the authors review the development of drugs used in the treatment of metabolic disease, from single agonists to the new generation of tri-agonist peptides and compile the latest knowledge available on GPCR-based drug discovery. The authors also provide the reader with their expert perspectives on this exciting area of drug development. Expert opinion: The co-agonists that have been clinically tested so far have been well tolerated and reduce body weight as well as fasting glucose levels in patients with Type 2 Diabetes Mellitus to a higher degree than single agonists alone. The promising data collected so far now warrant large scale randomized clinical trials to assess whether a unimolecular polypharmacy-based approach could translate into safe and efficacious treatments for obesity and its comorbidities.


Asunto(s)
Descubrimiento de Drogas/métodos , Enfermedades Metabólicas/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Desarrollo de Medicamentos/métodos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Enfermedades Metabólicas/fisiopatología , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Receptores Acoplados a Proteínas G/metabolismo
19.
J Endocrinol ; 240(3): 483-496, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30703063

RESUMEN

Multiple crosstalk between peripheral organs and the nervous system are required to maintain physiological and metabolic homeostasis. Using Vav3-deficient mice as a model for chronic sympathoexcitation-associated disorders, we report here that afferent fibers of the hepatic branch of the vagus nerve are needed for the development of the peripheral sympathoexcitation, tachycardia, tachypnea, insulin resistance, liver steatosis and adipose tissue thermogenesis present in those mice. This neuronal pathway contributes to proper activity of the rostral ventrolateral medulla, a sympathoregulatory brainstem center hyperactive in Vav3-/- mice. Vagal afferent inputs are also required for the development of additional pathophysiological conditions associated with deregulated rostral ventrolateral medulla activity. By contrast, they are dispensable for other peripheral sympathoexcitation-associated disorders sparing metabolic alterations in liver.


Asunto(s)
Vías Aferentes , Bulbo Raquídeo/metabolismo , Sistema Nervioso Simpático/fisiopatología , Nervio Vago/fisiopatología , Tejido Adiposo/metabolismo , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Hígado/metabolismo , Hígado/patología , Masculino , Bulbo Raquídeo/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Sistema Nervioso Simpático/metabolismo , Termogénesis , Nervio Vago/metabolismo
20.
Transl Psychiatry ; 9(1): 3, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30664624

RESUMEN

Major depressive disorder (MDD) is a common disorder with a variety of symptoms including mood alterations, anhedonia, sleep and appetite disorders, and cognitive disturbances. Stressful life events are among the strongest risk factors for developing MDD. At the cellular level, chronic stress results in the modification of dendritic spine morphology and density. Here, we study the role of Pyk2 in the development of depressive-like symptoms induced by a model of chronic unpredictable mild stress (CUMS). Pyk2 is a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the forebrain principal neurons and involved in spine structure and density regulation. We show that Pyk2 knockout mice are less affected to anxiety-like and anhedonia-like phenotypes induced by the CUMS paradigm. Using region-specific knockout, we demonstrate that this phenotype is fully recapitulated by selective Pyk2 inactivation in the amygdala. We also show that in the absence of Pyk2 the spine alterations, PSD-95 clustering, and NMDA receptors changes induced by the CUMS paradigm are prevented. Our results reveal a possible role for Pyk2 in the response to stress and in synaptic markers expression and spine density regulation in the amygdala. We suggest that Pyk2 contributes to stress-induced responses through micro-structural changes and that its deficit may contribute to the resilience to chronic stress.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal , Espinas Dendríticas/metabolismo , Trastorno Depresivo Mayor/etiología , Modelos Animales de Enfermedad , Quinasa 2 de Adhesión Focal/genética , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...